A few derived laws:

$$\frac{Xemma \ 1:}{(a^{-1})^{-1} = a}$$
if $a \neq 0$
ii) $(-a) + (-b) = -(a+b)$
 $a^{-1} \cdot b^{-1} = (a \cdot b)^{-1}$ if $a, b \neq 0$
iii) $a \cdot 0 = 0$
 $a \cdot (-b) = -a \cdot b$
 $(-a) \cdot (-b) = a \cdot b$
 $(-a) \cdot (-b) = a \cdot b$
 $a \cdot b = 0 \iff (a=0 \ a \ b=0)$

 $\frac{Proof}{1 \ claim}$
 $(a^{-1})^{-1} = a \ for \ a \neq 0$
 $Indeed$
 $I = a \cdot a^{-1}$ inv. elem.
 $I = a^{-1} \cdot a$ comm.
 $\Rightarrow a \ is \ inverse \ element \ with \ respect \ 16 \ a^{-1}$
ii) $Claim : (a \cdot b)^{-1} = a^{-1} \cdot b^{-1} \ for \ a, b \neq 0$
 $\Rightarrow \ have \ to \ show : (a \cdot b) \cdot (a^{-1} \cdot b^{-1}) = l$

Indeed

$$(a \cdot b) \cdot (a^{-1} \cdot b^{-1}) = (b \cdot a) \cdot (a^{-1} \cdot b^{-1})$$

$$= b \cdot ((a \cdot a^{-1}) \cdot b^{-1})$$

$$= b \cdot (1 \cdot b^{-1}) = b \cdot b^{-1} = 1$$
iii) Claim: $a \cdot 0 = 0$
Indeed

$$(a \cdot 0) = a \cdot (0 + 0)$$

$$= a \cdot 0 + a \cdot 0$$

$$\Rightarrow (a \cdot 0) - (a \cdot 0) = (a \cdot 0 + a \cdot 0) - (a \cdot 0)$$

$$= a \cdot 0 + (a \cdot 0 - a \cdot 0)$$
Using inverse element with respect to t
we get

$$0 = a \cdot 0 + 0$$

$$= a \cdot 0$$
headr. t
Claim: $a \cdot (-b) = -a \cdot b$
This holds as

$$a \cdot b + a \cdot (-b) = a \cdot (b - b)$$
Distr.

$$= a \cdot 0$$
inv. t

$$= 0$$
(see above)
Claim: $a \cdot b = 0 \Rightarrow (a = 0 \ a \ b = 0)$
Suppose $a \cdot b = 0$

Case 1:
$$b=0 \rightarrow we$$
 are done
Case 2: $b\neq 0$, then we have to prove a=0
 $a \cdot b = 0 \implies (a \cdot b) \cdot b^{-1} = 0 \cdot b^{-1}$ as $b\neq 0$
 $a \cdot (b \cdot b^{-1}) = 0$ (see above)
 $a \cdot 1 = 0$
 $a = 0$

ii)
$$a \cdot b > 0 \iff ((a > 0 \text{ and } b > 0))$$

 $a \cdot (a < 0 \text{ and } b < 0))$
 $a \cdot b < 0 \iff ((a > 0 \text{ and } b < 0) \text{ or } (a < 0 \text{ and } b < 0) \text{ or } (a < 0 \text{ and } b < 0))$

$$\begin{array}{c} iii) \quad 0 < l \\ a < 0 \quad \rightleftharpoons \quad a^{-1} < 0 \end{array}$$

Claim:
$$a < 0 \implies -a > 0$$

 $a < 0 \implies a + (-a) < -a$ Compatible with $+$
= 0 inv. +

$$\rightarrow -a > 0$$
ii) Zemma 1 iii)
(a=0 or b=0) $\Leftrightarrow a \cdot b = 0$ (1)
Trichotomy \rightarrow need to prove
(a>0 and b>0) or (a<0 and b<0)
as well as
(a>0 and b<0) or (a<0 and b>0)
 $\Rightarrow a \cdot b > 0$ (2)
(a>0 and b<0) or (a<0 and b>0)
 $\Rightarrow a \cdot b < 0$ (3)

Remark: two strategies for proving
$$A \Leftrightarrow B$$

1. prove $A \Rightarrow B$
prove $B \Rightarrow A$
2. prove $A \Rightarrow B$
prove $\neg A \Rightarrow \neg B$
Proving (1), (1) and (3) will imply
inverse of (2):
 $\neg((a > 0 \text{ and } b > 0) \text{ or } (a < 0 \text{ and } b < 0))$
 $\Rightarrow \neg(a \cdot b > 0)$
and similarly the inverse of (3)
 \Rightarrow it suffices to prove statements (1) and (3)
We prove here (3):
due to symmetry, it is enough to prove
($a > 0$ and $b < 0$) $\Rightarrow a \cdot b < 0$
Indeed ($a > 0$ and $b < 0$)
 $\Rightarrow (a > 0 \text{ and } b < 0)$
 $\Rightarrow (a > 0 \text{ and } b < 0)$
 $\Rightarrow (a > 0 \text{ and } b < 0)$
 $\Rightarrow (a > 0 \text{ and } b < 0)$
 $\Rightarrow (a > 0 \text{ and } b < 0$
 $\Rightarrow (a > 0 \text{ and } b < 0)$
 $\Rightarrow (a < 0 \text{ and } b < 0$
 $\Rightarrow (a > 0 \text{ and } b < 0$
 $\Rightarrow (a > 0 \text{ and } b < 0$
 $\Rightarrow (a > 0 \text{ and } b < 0)$
 $\Rightarrow (a < 0 \text{ and } b < 0)$
 $\Rightarrow (a < 0 \text{ and } b < 0)$
 $\Rightarrow (a < 0 \text{ and } b < 0$
 $\Rightarrow (a < 0 \text{ and } b < 0$
 $\Rightarrow (a < 0 \text{ and } b < 0)$
 $\Rightarrow (a < 0 \text{ and } b < 0$
 $\Rightarrow (a < 0 \text{ and } b < 0)$
 $\Rightarrow (a < 0 \text{ and } b < 0$
 $\Rightarrow (a < 0 \text{ and } b < 0$
 $\Rightarrow (a < 0 \text{ and } b < 0$)
 $\Rightarrow (a < 0 \text{ and } b < 0$
 $\Rightarrow (a < 0 \text{ and } b < 0$
 $\Rightarrow (a < 0 \text{ and } b < 0$
 $\Rightarrow (a < 0 \text{ and } b < 0$
 $\Rightarrow (a < 0 \text{ and } b < 0$
 $\Rightarrow (a < 0 \text{ and } b < 0$
 $\Rightarrow (a < 0 \text{ and } b < 0$
 $\Rightarrow (a < 0 \text{ and } b < 0$
 $\Rightarrow (a < 0 \text{ and } b < 0$
 $\Rightarrow (a < 0 \text{ and } b < 0$
 $\Rightarrow (a < 0 \text{ and } b < 0$
 $\Rightarrow (a < 0 \text{ and } b < 0$
 $\Rightarrow (a < 0 \text{ and } b < 0$
 $\Rightarrow (a < 0 \text{ and } b < 0$
 $\Rightarrow (a < 0 \text{ and } b < 0$
 $\Rightarrow (a < 0 \text{ and } b < 0$
 $\Rightarrow (a < 0 \text{ and } b < 0$
 $\Rightarrow (a < 0 \text{ and } b < 0$
 $\Rightarrow (a < 0 \text{ and } b < 0$
 $\Rightarrow (a < 0 \text{ and } b < 0$
 $\Rightarrow (a < 0 \text{ and } b < 0$
 $\Rightarrow (a < 0 \text{ and } b < 0$
 $\Rightarrow (a < 0 \text{ and } b < 0$
 $\Rightarrow (a < 0 \text{ and } b < 0$
 $\Rightarrow (a < 0 \text{ and } b < 0$
 $\Rightarrow (a < 0 \text{ and } b < 0$
 $\Rightarrow (a < 0 \text{ and } b < 0$
 $\Rightarrow (a < 0 \text{ and } b < 0$
 $\Rightarrow (a < 0 \text{ and } b < 0$
 $\Rightarrow (a < 0 \text{ and } b < 0$
 $\Rightarrow (a < 0 \text{ and } b < 0$
 $\Rightarrow (a < 0 \text{ and } b < 0$
 $\Rightarrow (a < 0 \text{ and } b < 0$
 $\Rightarrow (a < 0 \text{ and } b < 0$
 $\Rightarrow (a < 0 \text{ and } b < 0$
 $\Rightarrow (a < 0 \text{ and } b < 0$
 $\Rightarrow (a < 0 \text{ and } b < 0$
 $\Rightarrow (a < 0 \text{ and } b < 0$
 $\Rightarrow (a < 0 \text{$

Note: Q is not complete with respect to
ordering.
Proposition 1.1:
i) given a
$$\in R$$
, a>0: \exists n $\in N$ with n>a
ii) for x, y $\in R$ with x \exists z $\in Q$ such that x
iii) \forall x y ≥ 0 : $x \leq y \iff x^2 \leq y^2$
iv) \exists c $\in R$: $c^2 = 2$, $c>0$.
Proof:
i) Zemma 2 iii) \Longrightarrow N C R
Set $A = \{x \in R \mid x \leq a, x > n \forall n \in N\}$
Then N and A are non-empty sets such that
 \forall n $\in N$ and $x \in A$: $n \leq x$
(completeness axion $\Longrightarrow \exists$ c $\in R$: $n \leq c \leq x$ \forall werk,
Then \exists m $\in N$: $m > C = 1$ (otherwise c.e. A)
But then $n+1 > c$ $Y \Rightarrow A$ is empty
ii) i), compatibility with \cdot gives
 $n'.n > n'.a \Rightarrow q' > n'$

set q = (y-x)-1, Lemma 2 - iii) => a>0 and hence 1 < y-x choose meN such that my >x and (m-1)<x Then m < y iii) exercise iv) Zemma 2iú) ⇒ Q C R set $A = \{a \in \mathbb{Q} \mid 1 \le a \le a^2 < 2\}$, $\mathbb{B} = \left\{ b \in \mathbb{Q} \mid 1 \leq b \leq 2, b' \geq 2 \right\}$ \Rightarrow | ϵA , $2\epsilon B \Rightarrow A \neq \phi \neq B$ iii) ⇒ Vae A, beB : a < b Completeness axiom gives CER with the property: Vae A, be B: a < c < b (*) => 1462 "c is unique": suppose I CI < C2 in R satisfying (*) -> I CI, CZ E Q satisfying (*) (between any two real numbers there is a rational number)

Then
$$C = C_1 + C_2 \in Q$$
 and
 $\forall a \in A, b \in B : a \leq C_1 < C_0 = \frac{C_1 + C_0}{2} < C_2 \leq b$
 $c_0 \in A \cup B.$ If $c_0 \in A$ (*) cannot hold for c_1 ,
if $c_0 \in B$ (*) cannot hold for c_2 $\frac{1}{2}$
" $c^2 = 2$ ":
 $\forall a \in A, b \in B$ we have
 $a) 2 - c^2 \leq b^2 - c^2 \leq b^2 - a^2 = (b - a)(b + a) \leq 4(\frac{b - a}{2})$
 $b) 2 - c^2 \geq a^2 - c^2 \geq a^2 - b^2 = \frac{(a - b)(b + a)}{\leq 4}$
 $a) \Longrightarrow c^2 \geq 2$
Why 2 suppose the apposite is true: $c^2 < 2$
set $\varepsilon = 2 - c^2 > 0$,
then by ii) $\exists a b \in Q$ with $c < b < c + \frac{5}{8}$,
 $c - \frac{5}{8} < a < c$
 $\Rightarrow 4(b - a) < 4(c + \frac{5}{8} - c + \frac{5}{8}) = \frac{5}{8}$
but $4(b - a) \geq 2 - c^2 = \frac{5}{4}$
Similarly $b) \Longrightarrow c^2 \leq 2$
Altogether, we then get : $c^2 = 2$